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Abstract— The objective of this study is to investigate the plane dynamic response of a floating plate
supported by a fluid. The fluid underneath the plate is modeled using two-dimensional incom-
pressible potential flow theory. The fundamental solutions are obtained first. Once the solution for
the plate displacement is obtained. the other physical quantities of interest—-the temporal and
spatial distributions of the slope, moment, shear and even the buoyant force. the inertial force of
the fluid and the inertial force of the plate— can be evaluated numerically. Advantageously, using
superposition and the fundamental solutions presented in this paper. the solution for various loading
cases can be readily obtained. As an application. the dynamic behavior of a forced sub-surface
uplift problem is studied, Comparisons are then made with an added mass model. The results reveal
that the true hydrodvnamic moedel increases the mass and damping of the plate significantly.

1. INTRODUCTION

In this study. the plane dynamic response of an infinite plate is considered (Fig. 1). The
floating plate may represent. for instance, an ice sheet. in which case it is infinite in both
directions of the plane (v and y): the external loading is considered to be uniformly
distributed in the y direction. One practical use for the class of solution developed in this
paper is the sudden loading of ice sheets ; obvious examples include submarine surfacings
and aircraft landings. Elastostatic layer studies (Dempsey er al.. 1990) reveal that elastic
plate theory can predict accurate results as long as the ratio of the characteristic length [see
eqn (4)] over the layer thickness is larger than eight. The fluid underneath the plate
is modeled using two-dimensional incompressible potential flow theory. Using Fourier
transforms, the fluid- plate interface pressure 1s expressed in terms of the transformed plate
deflection and its derivative ; the governing equation reduces to an ordinary differential
equation. Ultimately. the deflection of the plate is expressed in terms of an integral of the
surface loading.

Sodhi (1989) recently conducted a series of small-scale tests for submarine surfacing
under given motion of the indenter. in which the floating model ice sheets were pushed
vertically upwards by cylindrical indenters. When the dimension of the indenter in one
direction is much larger than that in other direction. the problem can be treated as a planar
forced uplift. Using fundamental solutions presented in this paper, the problem is reduced
to a Volterra integral equation of the first kind, Volterra integral equations of the first kind
are difficult to treat. After some numerical experimentation. it proved advantageous to
transform the governing equation into an integro-differential equation.
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Fig. 1. Problem configuration and coordinates : (a) a concentrated force : (b) a concentrated moment
on a floating plae
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2. PROBLEM DESCRIPTION

The fluid under the plate is modeled using two-dimensional incompressible potential
flow theory. The motion of the floating plate is modeled using Euler—Bernoulli plate theory :

ST ST ¢

( &
e.Bph——-+E1- +p,=qgx.t)=-N
cxt

- ()
ol
where £ 7 is the flexural rigidity of the plate. p, is its mass density. /4 the vertical thickness,
B the width. w the vertical displacement and §(t. 1) is the surface loading on the plate. In
eqn (1). ¢, = | for the clastohydrodynamic model ; for the added mass model, ¢, is unknown
at present (and is to be determined) ; j, is the fluid-plate interface pressure exerted by the
hydrodynamic reaction In the last term of eqn (1), N = dh is the in-plane compressive
force. where & is the in-plane (thermal or residual) stress in the plate. For sea ice sheets, &
may vary between — 300 kPa and 0.
Non-dimensional quantities and coordinates. as well as the Fourier transform with
respect to v, are introduced for the governing equation and the associated boundary and
initial conditions,
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denotes the characteristic length. For an isotropic, homogeneous elastic plate,
E’ = E {1 —v") for plane strain {8 = 1) while £ = E for plane stress.

The bottom-surface pressure due to the acceleration of the water is treated by assuming
that the motion of the water 1s governed by two-dimensional potential flow theory (Kheisin,
1967: Nevel. 1970 Dempsey and Zhao. 1993). This interface pressure also acts in the
contact area. To this end. let ¢ be the corresponding water potential function ; assuming
that the water is incompressible and irrotational, conservation of water mass requires that

Vwﬂ?+c)i?:o (5)
X7 VA Con

The water velocity vector v is the gradient of the potential function ¢. At the deformed
fluid water interface 7, = 1w+ A, the vertical velocity of the fluid is equal to the vertical
velocity of the plate. Assuming that the depth A of the fluid under the plate is a constant,
the vertical velocity at = = (H + h,) is zero. Physically, as v approaches infinity, the velocity

1s zero. Therefore. ¢ approaches to a constant, and it is set equal to zero as x approaches
infinity. The boundury conditions on the fluid layer (Dempsey and Zhao, 1993) are then
given by
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The pressure p, in eqn (3) may then be determined from Bernoulli’s equation, assuming
that the water has no viscosity and that as x approaches infinity. v-v = 0, p, = O and w = 0,

Col
Do ==y ;(bf . (7)
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in which the term proportional to the square of the vertical velocity is omitted because of
its non-linearity and the influence of this term on the results is not significant ; ¢, = 0 for the
added mass model. while ¢, = 1 for the elastohydrodynamic model. No material damping is
included.

The motion of the floating plate in non-dimensional form is given by
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Using Fourier transforms. eqn (5) for the transformed potential function, which is used in
evaluating the transformed pressure from eqn (7). 1s reduced to

. @ :
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Therefore, the condition in eqn (6) requires that (using 7 = yA/l)
® = 4, cosh(72)+ 4, sinh (72). (10)

The constants 4, and 4. are determined by using transform of boundary conditions (6a,b).
Eventually. the Fourier transform of eqn (7) becomes,

e F i — e ] (1)
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3. FUNDAMENTAL SOLUTIONS
When the floating plate is subjected to a concentrated load at ¥ = ¢ [Fig. 1(a)],
Gue.r == Py f*(1)o(x—c) B. (12)

where 4(-) is a delta function, P, = p_ yBIhP, is the value of the applied load and the time
function f*(¢) = (1) indicates the variation of the external force with time. Substituting
eqn (12) and the non-dimensional notation in (2) into eqn (8), the Fourier transform of
eqn (8) gives
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The solution for the transformed deflection W(;. 1) is readily obtained as

P” C(
Wiy 1) = 5 @ — ;—I(ﬁ.‘.,r), (14)
<M+ 47
in which
I(p.1)= [lv/'(u)sin [f-(t—w)]du, (15

Y

is the convolution of the time function f (7). and
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For later use, note that if f(z) is the Heaviside function. I(f.. ©) = (1 —cos B,1)/8,. The
displacement of the plate is quickly obtained by the inverse transform (3b). Noting that
the function inside the integral is even in 7,
P, " fB.cos
wvn = | peoslit= ]1(/3 (172)
n v l +6/ -

The slope. moment and shear force can readily be written as

0(x. 1)/ i
Biv.ry = ‘ Hisnlit ]Iw 7} dy, (17b)
h T 1y | + o7
JM(\ ’[_ P() ,.1 /j “: COS[ (\
MIN.T) = = d 17
M(x.7) BHE] e 1(/3 1) (17¢)
Q(\ Nl P, B ""sin[ )]
v =2 o : = I(B.. 17d
N T ) R T (o

These are the Green's functions of the title problem. For the symmetric loading,
gz, 1) = Py f*()[3(¥~¢)+3(%+ )] 2B. the solution can be obtained by using eqn (17)
and superposition

P p .
wixo) = Y ‘T:L( "‘:s( Y 1.0 d. (18)
Jo gy’ :

For the antisymmetric loading, (3. 1) = P, f*(1){3(X — &) — X+ ¢)]/2B, similarly, the solu-
tion can be obtained

P, B
w(v) = b ‘]”r ¢ 1“( ) 180 dy. (19)
v ay” v

Defining M, = P,c as a finite value. when ¢—0, sin(ye)/ye -1, and letting
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Fig. 2. Displacement of a floating plate subjected to a sudden force: (a) hydrodynamic solution :
(b) hydrodynamic vs addec mass model at = = 0.25and (¢)y att = 1.0.

My = Mi(p.gl"hB) = M, (BhE'T). eqn (19) leads to the solution for a concentrated
moment [Fig. 1(b)].

Wi T) = - L3 R ‘ Itp.oyd. (20)

Using the fundamental solutions (7). (20) and superposition. the solution for various
loading cases can be readily obtained. In these evaluations. the in-plane stress o, is assumed
to be zero. The influence of the in-plane stress on the dvnamic response will be discussed
in the dynamic forced uplift problem.

The deflection of a floating platc subjected to a sudden concentrated load P H(r) at
the origin is portrayed in Fig. 2. Figurz 2(a) shows that the difference between the static

SAS 33-1-C
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Fig. 3. Moment distribution of a floating plate subjected to a sudden force: (a) hydrodynamic
solution : (b) hydrodynamic vs added mass solutions.

solution (Timoshenko, 1958) and the dynamic solution is pronounced for early times but
is much reduced for later times. The hydrodynamic coupling decreases the rate of change
of the displacement in the vicinity of the load but dramatically increases the above- and
below-surface deflections away from the load. This feature reflects the volume conservation
in the fluid layer, implicit in the incompressible and irrotational flow theory used. Figures
2(b, ¢) compare the hydrodynamic solution (¢, = 1, ¢, = 1) with the added mass model
(¢, = 0) for an early and later time. The added mass model (¢, = 0) can be constructed to
fit the hydrodynamic solution for a chosen range of ¥// and for early or later times;
however. different ¢, values are required for each specific case. The complexity of the
elastohydrodynamic coupling is clearly not readily treated by an added mass model of the
type chosen in this paper.

The moment distribution for a floating plate subjected to a sudden concentrated load
P H(1) at the origin is plotted in Fig. 3. Figure 3(a) reveals the similarity between the static
solution and the hydrodynamic solution. Only for early times does the moment distribution
differ markedly. Figure 3(b) compares the hydrodynamic and added mass models for
various normalized times 7 [1 = 1/ (/;g)]. These particular moment distributions have been
fitted for the initial range of x//(| | < 1.5/) by choosing the optimum added mass coefficient.
The range of the added mass is 7 13 times the mass of the plate for r < 1.0, and increases
as time increases. The added mass model can accurately predict the bending moment near
the loading area by choosing suitable coeflicients ¢,. The far-field moments are substantially
underpredicted by the added mass model. Another feature of the moment distribution is
that the moment from the added mass model oscillates more than that from hydrodynamic
model. The obvious effect of the fluid inertia on the plate is to increase the mass and the
damping of the plate significantly. While an increasing added mass coefficient is required
for later times. it should be noted that the agreement between the moment distributions is
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Fig. 4. Displacement of a floating plate subjected to @ sudden moment : hydrodynamic vs added
mass solutions

much better than for the defiecions The moment does not rapidly redistribute with time ;
in addition, the moment is maximum under the load for the times considered.

The deflection induced by a sudden concentrated moment M H(r) at the origin is
plotted in Fig. 4. The solid lines represent the solution of hydrodynamic model while the
dashed lines indicate the solution of the added mass model. The deflection is zero at ¥// =0
since the load is antisymmetric. Trial and error is used to find the best agreement near the
loading area (%// < 2). Similar to Fig. 3(b). the fur-field displacements are substantially
underpredicted by the added mass model. The range of the added mass is 7-13 times the
mass of the plate for v < 1.0. and increases us time increases. The maximum deflection
occurs near v/ =0.6forr=025and v /= 1forr =1

The moment distribution for a floating plate subjected to a concentrated moment is
plotted in Fig. 5. Figures S(a.b) compare the normalized hydrodynamic solution with
specific added mass solutions. evaluated at v = 0.25 and t = 1.0. respectively. The
coeflicients ¢, = 8 and 14 for the added mass model are presented. Clearly, for early times,
near the Joading area (v/ < 1.0), the added mass modcl is satistactory while for the far-
field. the moments are significantly different from the added mass solution. Again, the
added mass moment distribution oscillates faster than that of the hydrodynamic model.
For later times. when the hvdrodynamic effects are not as pronounced. the added mass
concept is more effective.

4 DYNAMIC FORCED UPLIFI

In the forced uplift problem (Fig. 6), the plate is assumed to be at rest before contact
while the indenter moves upwards at a constant velocity ¢, . During the early stages of
contact, the indenter has some deceleration but quickly returns to its velocity ¢, ; meanwhile,
the plate experiences acceleration in and close to the contact region and in the contact zone
attains the velocity r, very quickly. In this paper. the approach is to describe effectively
the uplift motion and then determine the necessary uplift torce to accomplish this prescribed
motion. The uplift of the floating plate by the indenter is thus described as

WO ) = hife, (e Ty ) (21)

where the parameter » 1s a function of the geometry ol the indenter. and the amount of
crushing between the indenter and the plate. The “best™ value for « is influenced also by
the fluid flow occurring prior to contact and any inelastic processes (cracking, creep)
that occur during uplift. This parameter needs to be determined by comparisons with
experiments ; the advantage of the expression stated in egn (21) is the resulting problem
simplification and the ability to evaluate the influcnces of plate thickness and indenter
velocity on the uplift force. The normal zed uplift motion of the indenter in eqn (21) 1s
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Fig. 5. Momeut distribution in a floating plate subjected to a sudden moment : (a) hydrodynamic
vs added mass model at t = 0.25and (b) at t = 1.0.
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Fig. 6. Coordinates and loading configuration : forced planar uplift.

w1y = —[I—(1—e ")/, (22)

inwhich 7= (¢, Iy, (L g).

The indentation time constant /1 1, is of course the time taken by the indenter to
traverse the plate thickness if no deceleration on contact were to take place. The ratio #/v,,
is used as a time normalization parameter in eqn (21) and for the solutions obtained in this
paper. The assumptions of small deformations and negligible creep effects necessarily
restrict the solutions to times 1, i < 0.2.

The uplift load required 1s an unknown time function and is to be determined.
Assuming the indenter is a long rigid strip. the distribution of uplift force induced by the
indenter can be approximated as a line load on the bottom surface of the floating plate, i.e.
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For a given uplift motion. eqn (17a) can be reduced to a Volterra integral equation of
the first kind :

"

w(O.ry = — | Pun[K(t - )] du. (24a)
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where the kernel K(b) 1s
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The Volterra integral equation (24a) is of the convolution type; a rigorous solution
may be obtained by making use of the Faltung theorem for Laplace transforms (Sneddon,
1951). In the following. let # (0. s), 2(s) and .# (0. s) be the Laplace transforms of the
functions (0. 7). P(r) and K(0. 7). respectively ; cqn (24a) is then reduced to an algebraic
equation.

#()os) = — 204 (0.s). (25)
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(0 e v d ; . 26a)
L8) = = (- 7 > Ydt = — — - —— 4
(0, 5) J“ [f—l-¢ ")xec Ry (

) R e /3 - 1

H(0.y) = ‘ ¢ Usin(forydr : . d; = ' = — —dy, (26b)
Jo Jo o ot Jo T+ P

in which 4 = (¢, &) (/¢). The titie problem 1s reduced to the problem of finding the
inverse Laplace transform of .2(s),

.

O
Pty =Y "[2P5)] =& ‘l e ”}. (27)
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The numerical technique of inversion of Laplace transforms described by Bellman et
al. (1966) was inmtially used to evaluate the solution in eqn (27): the accuracy of the
technique was assessed by numerically solving a number of convolution-type integral
equations and found to vary considerably from equation to equation. An independent
method of solution was therefore developed for comparative purposes. The latter method
(described next) proved to be both more accurate and more reliable in the accuracy
obtained. The results presented in this paper were obtained using the solution procedure
now described.

Volterra integral cquations of the first kind mav sometimes be transformed into
equations of the second kind (Baker, 1977). which can be readily solved ; however, it is
difficult to treat equations of the first kind directlv. A solution P(r) may not exist for every
form of the forcing function that could be specified . when one does exist it may not be
unique or it may be difficult to determine accurately (Baker. 1977). Ultimately, it proved
advantageous to transform the integral equation (24a) into an integro-differential equation,
viz.
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Table . Characteristic length : ice thickness ratios

Sea ice Freshwater ice
fi{m) ftm) 1 h f(m) 1ih
0038 1.27 254 1.90 38.1
0.10 213 21.2 3.20 32.0
0.50 714 143 10.7 21.4
1.00 12.0 12.0 18.0 18.0
3.00 274 9.13 41.0 13.7

/= 12k (scaice) and 1847 * (freshwater ice).

P(t)/(pwyh? BY*(h)1)¥/5

)

Fig. 7. Influence of in-plane stress on the uplift force for various sea ice thicknesses.

i} Py
w(0.7) = — P(O)R(0) + ((QSQ[K(T—LJ)] du, (282)
Ju  ©
where
K0y = ((2)/4, (28b)
and

by = | [ st g, (28¢)
o L+oi4?

The ratio of characteristic length to plate thickness for sea ice is listed in Table 1. The
influence of an in-plane stress on the uplift force for various sea ice thickness is shown in
Fig. 7. The uplift force is normalized as (P(1)/p,gh’) x (h/1)** and the in-plane stress is
assumed to be as low as — 300 kPa. Obviously, for short times (fv, /i < 0.1) the solutions
with and without in-plane stress for various ice thicknesses nearly coincide. The influence
of the in-plane stress on the uplift force is negligible for short times. However, for later
times, the compressive in-plane stress reduces the uplift force significantly, especially for
thinner ice sheets. Figure 8 shows the actual uplift force vs ice thickness for various times.
The results reveal that the uplift force increases steadily with increasing ice thickness and
rate of uplift.

The line loads required to uplift dvnamically a floating plate according to the deflec-
tion—time uplift function specified in eqn (21) are plotted in Fig. 9 for various //A ratios,
and 1n Fig. 10 for various normalized uplift velocities (vx,/h)\/(p,-h/p",g). In both plots, the
ratio of the water depth to plate depth is a constant (H/h = 80). The uplift load is plotted
against non-dimensional time 7=, h= (v, ‘h)/(l/g). Figure 9 reveals a significant
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dependence on the characteristic length ratio /-4, However. if the uplift force is normalized
as (P(1)/p.gh™) =< (h D" " all of the curves nearly coincide for early times (tv, /A < 0.2). Note
that the true uplift forces steadily increase as /:/1 increases. since a larger value of //A—given
a specific plate thickness i corresponds to a larger elastic modulus E’. An important
feature of the uplift force is the very fast rate of increase for e, /h < 0.1 for later times,
the rate of increase drops off substantially. The major component of the uplift force for
early times is the inertia force imparted by the fluid that must be accelerated into motion
by the plate. Figure 10 reveals that the uplift forces depends strongly on the eventual uplift
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velocity ¢, in egn (21). [t is worth noting that the magnitude of the uplift acceleration is
given by x(r5 h)e "+ ". Larger values of rr, correspond to higher inertial forces and,
consequently, higher uplift loads are expected during early times.

5. PLANAR VS AXISYMMETRIC

The response of a dynamically forced floating plate can readily be derived from the
solution of an axisymmetric floating plate. The hydrodynamic solution of an infinite floating
plate under a uniform distributed ring load (Dempsey and Zhao. 1993) is:

b GO Gr dy [ P(u) sin [, (t— )] d, (29)

wr. ) = [
o | Jo

Y

where ¢ 1s the radius of the ring and P(z) is the non-dimensional load on the upper surface,
and is defined as P(t) = P’(1); 2=p, gi*h). For the concentrated load case, let P(t) = Py f (1)
and ¢ = 0:in this case eqn (29) 1s reduced to

]
wir. 1) = P, i oG (B, Ty dy, (30)
J0 1 +','4
where
1B = l Fuy sin [B.(c — )] du. 31)

Jo

Since both the plate and the fluid foundation are linear, superposition can be employed
for the solution under various loading combinations. Consider the load to be uniformly
distributed 1n a straight line: the lateral concentrated load P’(r) is now replaced by
P’(t)dn'/B along a straight line. in which B is the range of the distributed load. The y
coordinate coincides with the load line, while the x coordinate is normal to the load
line. Should the dimension B be infinite. the solution should naturally be independent of
coordinate v. The radius r in the Bessel function of eqn (30) represents the distance from
the load point to the point of investigation. i.e. r = /(x> +#?), in which # is the dummy
argument in the v direction. Thus. the general expression for the displacement produced by
a line load of finite length is

P, a2 Y o ,
dn [ Jo[p/ (P 07 H(B,. 1) dy. (32)

J B2 JU

wn.1) = .
2ap,.gBl-h

Letting B — » .y = 5"/ and remembering the identity (Erdelyi et al., 1954)

[ ., cos (7X)
Syl (0] dp = =, (33)
eqn (32) quickly yields
e P B
D b}, 1 € PO o9

Recalling the definition of the non-dimensional load P, in eqn (17a), eqn (34) is identical
to the solution of a dynamically forced floating plate in the case of c = 0 and ¢ = 0.
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6. CONCLUSIONS

The results from this study reveul that the effect of including the hydrodynamic reaction
is significant. The fluid underneath the plate increases the mass and damping of the plate
substantially. The added mass model does not have the potential to model the local
dynamic response accurately since the required added mass coefficient is spatially and time
dependent. Moreover. the global deformations are influenced greatly by the hydrodynamic
coupling. The forced uplift study shows that the motion of the plate is dominated by the
fluid inertia during the early stages of uplift.
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